3.16 \(\int \cos ^2(c+d x) (a+a \sec (c+d x))^2 \, dx\)

Optimal. Leaf size=45 \[ \frac{2 a^2 \sin (c+d x)}{d}+\frac{a^2 \sin (c+d x) \cos (c+d x)}{2 d}+\frac{3 a^2 x}{2} \]

[Out]

(3*a^2*x)/2 + (2*a^2*Sin[c + d*x])/d + (a^2*Cos[c + d*x]*Sin[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0602976, antiderivative size = 45, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {3788, 2637, 4045, 8} \[ \frac{2 a^2 \sin (c+d x)}{d}+\frac{a^2 \sin (c+d x) \cos (c+d x)}{2 d}+\frac{3 a^2 x}{2} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^2,x]

[Out]

(3*a^2*x)/2 + (2*a^2*Sin[c + d*x])/d + (a^2*Cos[c + d*x]*Sin[c + d*x])/(2*d)

Rule 3788

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[(2*a*b)/
d, Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 2637

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \cos ^2(c+d x) (a+a \sec (c+d x))^2 \, dx &=\left (2 a^2\right ) \int \cos (c+d x) \, dx+\int \cos ^2(c+d x) \left (a^2+a^2 \sec ^2(c+d x)\right ) \, dx\\ &=\frac{2 a^2 \sin (c+d x)}{d}+\frac{a^2 \cos (c+d x) \sin (c+d x)}{2 d}+\frac{1}{2} \left (3 a^2\right ) \int 1 \, dx\\ &=\frac{3 a^2 x}{2}+\frac{2 a^2 \sin (c+d x)}{d}+\frac{a^2 \cos (c+d x) \sin (c+d x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.0393088, size = 34, normalized size = 0.76 \[ \frac{a^2 (6 (c+d x)+8 \sin (c+d x)+\sin (2 (c+d x)))}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^2,x]

[Out]

(a^2*(6*(c + d*x) + 8*Sin[c + d*x] + Sin[2*(c + d*x)]))/(4*d)

________________________________________________________________________________________

Maple [A]  time = 0.058, size = 52, normalized size = 1.2 \begin{align*}{\frac{1}{d} \left ({a}^{2} \left ({\frac{\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{2}}+{\frac{dx}{2}}+{\frac{c}{2}} \right ) +2\,{a}^{2}\sin \left ( dx+c \right ) +{a}^{2} \left ( dx+c \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(a+a*sec(d*x+c))^2,x)

[Out]

1/d*(a^2*(1/2*cos(d*x+c)*sin(d*x+c)+1/2*d*x+1/2*c)+2*a^2*sin(d*x+c)+a^2*(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.09854, size = 65, normalized size = 1.44 \begin{align*} \frac{{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} a^{2} + 4 \,{\left (d x + c\right )} a^{2} + 8 \, a^{2} \sin \left (d x + c\right )}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

1/4*((2*d*x + 2*c + sin(2*d*x + 2*c))*a^2 + 4*(d*x + c)*a^2 + 8*a^2*sin(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 1.70518, size = 82, normalized size = 1.82 \begin{align*} \frac{3 \, a^{2} d x +{\left (a^{2} \cos \left (d x + c\right ) + 4 \, a^{2}\right )} \sin \left (d x + c\right )}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

1/2*(3*a^2*d*x + (a^2*cos(d*x + c) + 4*a^2)*sin(d*x + c))/d

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a^{2} \left (\int 2 \cos ^{2}{\left (c + d x \right )} \sec{\left (c + d x \right )}\, dx + \int \cos ^{2}{\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}\, dx + \int \cos ^{2}{\left (c + d x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(a+a*sec(d*x+c))**2,x)

[Out]

a**2*(Integral(2*cos(c + d*x)**2*sec(c + d*x), x) + Integral(cos(c + d*x)**2*sec(c + d*x)**2, x) + Integral(co
s(c + d*x)**2, x))

________________________________________________________________________________________

Giac [A]  time = 1.32744, size = 86, normalized size = 1.91 \begin{align*} \frac{3 \,{\left (d x + c\right )} a^{2} + \frac{2 \,{\left (3 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 5 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

1/2*(3*(d*x + c)*a^2 + 2*(3*a^2*tan(1/2*d*x + 1/2*c)^3 + 5*a^2*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 +
 1)^2)/d